

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-144473

Performance of Neural Networks
Methods in Intrusion Detection

V. N. P. Dao, R. Vemuri

This article was submitted to Cyber Defense Initiative, Washington,
D. C., November 27 - December 3, 2001

July 9, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or
the University of California, and shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made
before publication, this preprint is made available with the understanding that it will not be cited or reproduced
without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the University of
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge
Available for a processing fee to U.S. Department of Energy

And its contractors in paper from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

Or
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

Performance of Neural Networks Methods in Intrusion Detection

Vu N.P. Dao 1
dao1@llnl.gov

Rao Vemuri 1, 2
rvemuri@ucdavis.edu

[1] Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551
[2] Department of Applied Science, University of California, Davis, CA 95616

Abstract
By accurately profiling the users via their

unique attributes, it is possible to view the
intrusion detection problem as a classification of
authorized users and intruders. This paper
demonstrates that artificial neural network (ANN)
techniques can be used to solve this classification
problem. Furthermore, the paper compares the
performance of three neural networks methods in
classifying authorized users and intruders using
synthetically generated data. The three methods
are the gradient descent back propagation (BP)
with momentum, the conjugate gradient BP, and
the quasi-Newton BP.

I. Introduction

Computer security issues are becoming
headline grabbing items. According to one report,
computer systems on the Internet are being
attacked hundreds of times – each day [1]. One
way of preventing computer attack is to detect
intruders and stop them from accessing the
protected computer networks. This paper focuses
on intrusion detection and explores the potential of
artificial neural networks as on-line, real-time tools
for detecting intrusive activities. Toward this goal,
the objective is to construct a model that captures a
set of user attributes and determine if that set of
user attributes belongs to the authorized users or to
that of intruders.

The relevance of ANN's in intrusion detection

becomes apparent when one views the intrusion
detection problem as a pattern classification
problem. Using profiles of authorized computer
users [2], one can train an ANN to recognize the
authorized users in the incoming traffic, thus
separating authorized traffic from intrusion traffic.

 More importantly, many of the current
intrusion detection techniques cannot detect new
and novel attack patterns. It is precisely in this
area that the learning and generalization
capabilities of ANN's can be exploited.

The rest of the paper is organized as follows.

Section II formulates the problem and gives an
overview of the different neural network methods
used in detecting the intruders. Section III covers
the generation of the test data sets. Section IV
summarizes the results and compares the
performances of the various neural network
methods. Section V summarizes the research
findings. Section VI gives a brief conclusion of the
research and points to new research areas. The
appendix lists the results.

II. Problem Formulation and The
Back Propagation Methods

Mathematically speaking, the problem can be

stated as follows. Given a training data set S, the
goal is to establish a mapping f from any given
input vector x to an output class d.

(){ } ,:, dpRiiyiS ∈= xx

Where x is the input vector, defining a user’s
characteristic attributes and d is a scalar binary
output to distinguish an authorized user from an
intruder. From a modeling perspective, the
objective is to seek a model that provides the best
fit to the given training data and the best prediction
capability with future observed data (also known as
test data set), while minimizing model complexity.
The above objective is typically accomplished by

building a model (i. e., the neural net, or
equivalently, the mapping function f) and train it
prior to using that model for intrusion detection.
During the training phase, a performance index,
defined in terms of the error, e, (e = d – y) is
minimized. Where d is the desired output and y
is the actual output.

The back propagation method is a popular
technique to train multi-layer feed-forward neural
networks in a supervised manner. This method is
well known and details can be found in the
published literature [3,4]. What follows is a brief
synopsis of the methods and formulas used in this
study. In each of these methods, the term
"training" refers to the systematic procedure used
to adjust the "weights" in a weighted sum of inputs
that is responsible for activating a neuron. The
sigmoidal activation [4] is used in this study.

 In the gradient descent with momentum (GDM)
[5,6], the new weight vector wk+1 is adjusted as:

Where α is the learning rate, gk is the gradient of
the error with respect to the weight vector, and µ is
the momentum constant which can be any number
between 0 and 1.

 In the conjugate gradient algorithms a search is
performed along conjugate directions, which
produces generally faster convergence than the
steepest descent method. In the conjugate gradient
algorithms the step size is adjusted at each
iteration. A search is made along the conjugate
gradient direction to determine the step size which
will minimize the performance function along that
line. The version of conjugate gradient method
used here is due to Polak and Ribiere (CGP) [5,6].
The search at each iteration is determined by
updating the weight vector as:

Newton’s method is an alternative to the
conjugate gradient methods for fast optimization.
Newton’s method often converges faster than
conjugate gradient methods. The weight update for
the Newton’s method is:

kkkk
gAww 1

1
−−=

+

Ak is the Hessian matrix of the performance index
at the current values of the weights and biases.
When Ak is large, it is complex and time
consuming to compute wk+1. Fortunately, there is a
class of algorithms based on the works of Broyden,
Fletcher, Goldfarb, and Shanno (BFGS) [4,7] that
are based on Newton’s method but which don’t
require intensive calculation. This new class of
method is called quasi-Newton method. The new
weight wk+1 is computed as a function of the
gradient and the current weight wk.

III. Creation of Training and Test
Data Sets 11 −

+−=
+ kkkk

wgww µα

Creation of training data is central to the

success of any neural networks method. One of the
challenges is in creating intrusion scenarios.
Earlier works have shown that computer users
exhibited unique characteristics, and that computer
users can be profiled accurately based on their
attributes [2,8]. One way of collecting the data
logs is to turn on the process accounting on UNIX
operating system hosts and direct the output to a
logfile. Other ways of collecting data logs can be
from applications such as TCPdump, Snort, Syslog,
and Dragon IDS [9]. The information collected in
these logfiles ranges from the command type, login
host, login time, CPU and memory usage to TCP
header information such as the interface, source
and destination addresses and ports, sequence
numbers, window size, etc.

T
k

T
k

T
k

k
T
k

k
T
k

k

kkkk

kkk

11 and

11

1

1
 :where

1

−
−=−∆

−−

−
∆

=

−
+−=

+=
+

ggg

gg

gg

pgp

pww

β

β

α By turning on the UNIX OS process
accounting, data logs were collected at the
Computer Security Laboratory at the University of
California, Davis. From these data logs, computer
users were profiled based on four attributes [2].
These attributes were: (i) the command set used by
the user, (ii) the login host, (iii) the time of login,
and (iv) the time required to execute each of the
commands entered (i.e. the CPU time). Two data
sets for training and testing the neural networks
were created. For simplicity in testing, these two
data sets were created on the same host. Each of

these two data sets now has three attributes:
command set, time of login and CPU time. The
characteristic of the data set and how they were
used for testing are covered next.

A. Characteristics of Data Set

The objectives of creating data sets for training
and testing were twofold. First is to test the
capability of the neural networks to classify data

from authorized users and intruders that are
linearly separated. Second is to test the
performance in situations where the profiles of
authorized users and intruders have some
similarity. Two data sets were created based on
four features above. In the first data set, the
authorized users and intruders were separable from
each other. The features in the second data were
selected to blur the distinction between the
authorized users and intruders. The characteristics
of the two data sets are summarized in Table 1.

 User Features Authorized Users Intruders

Command Set
{1,3,6,7,8,11,14,17,19,21,22,25, 26,
28,29,31,33,37,38,41,43,44,46,47,
49,50,51,54,55,59,61,70,72,76,78,
79,81,84,85,87,91,92, 93,95,98,99}

{1,..,100}

Login Host 1 1
Login Time 6:00 – 19:00 1:00 – 5:00; 20:00 – 24:00

First
Data
Set

CPU Time [µsec] {1,2,3,4,5,6,7,8} {50,60,70,80,90,100,200,300}

Command Set
{1,3,6,7,8,11,14,17,19,21, 22,25,26,
28,29,31,33,37,38,41,43,44,46,47,
49,50,51,54,55,59,61,70,72,76,78,
79,81,84,85,87,91,92, 93,95,98,99}

{1,..,100}

Login Host 1 1
Login Time 6:00 – 19:00 1:00 – 7:00; 18:00 – 24:00

Second
Data
Set

CPU Time
[µsec]

{1,2,3,4,5,6,7,8} {5,6,7,8,10,20,40,50,60,70,
80,90,100,200, 300}

Table 1: User Profile Characteristics of Generated Test Data

B. Organization of Data Set

The next step is to organize the data set into a

suitable format for training and testing. The
generated data was organized into two parts. The
first part is for training. Each training input sample
came with a desired output. Here, ninety percent
(90%) of the input data was generated as
authorized traffic and ten percent (10%) as
intrusion traffic. The second part is for testing the
performance of the methods. In this part, ninety
eight percent (98%) of the traffic were generated to
be authorized traffic and two percent (2%) of the
traffic to be intrusion traffic. In both parts of the
training and test data section, several bursts of
intrusion data are inserted into the authorized data
stream. Each of the generated input data file has
7000 samples. The first 5000 samples are the
training data, and the next 2000 samples are the
test data. Authorized traffic is designated Class
Positive and unauthorized traffic as Class Negative.
Figure 1 illustrates the structure of the generated
data files. Here an input sample is defined as a unit

of data being fed into the neural network at one
time; one sample can consist of many command
units (CUs). A CU is defined as a set of four
elements – the UNIX command, the login host, the
time of login, and the execution time of the
command (i.e. CPU time).

training data
(5000 samples)

testing data
(2000 samples)

Figure 1: Construction of The Generated Data

Authorized
Data

Intrusion
Data

CU1 CU3CU2 ...

command host time exe time

The objective is to test the neural networks for

detecting intrusion traffic with the fewest number
of CUs. With that objective, three test files for the
first data set and three test files for the second data
set are generated. These six files are identified as
follows: File1a, File1b, File2a, File2b, File3a and
File3b. Each of the files File1a & File1b have 5
CUs in each input sample (that is, 5 x 4 = 20 input
neurons). Thus File1a, for example, has 20 x 5,000
= 100,000 elements in the training section and 20 x
2000 = 40,000 elements in the test section. The
same goes for File2a, File2b, File3a and File3b.
The total number of elements for each input file is
shown in Table 2.

 File1a

File1b
File2a
File2b

File3a
File3B

Train
Data

100,000 120,000 140,000

Test
Data

40,000 48,000 56,000

Total 140,000 168,000 196,000

Table 2: Number of Elements in the Test Files

IV. Simulation Results and
Performance Comparison

Simulation results are summarized in table 3

and table 4. In these tables, topology specifies the

neural network architecture. For example, a
topology of {20,10,1} indicates 20 input neurons,
10 hidden neurons, and 1 output neuron. The
parameters α, µ, indicate the learning rate and the
momentum constants of the gradient descent BP
with momentum. The quantity e is the mean of the
square error (MSE) of the difference between the
actual output y and the desired output d. An epoch
is one complete presentation of the training data.
‘FalsePos’ and ‘FalseNeg’ are the false positive
and false negative rates in classifying users. A
false positive is classifying an authorized user as an
intruder; conversely, a false negative is classifying
an intruder as an authorized user. Each method
terminates when any of the following condition
occurs: (i) MSE = exp(-5), (ii) Epoch = 500, and
(iii) when the gradient undergoes negligible change
from one epoch to the next (i.e. typically exp(-10)
in the simulation).

Table 3 summarizes results obtained when the

first data set was applied as input. Since the
gradient descent with momentum (GDM) method
did not perform as well as the other two methods
(CGP and BFGS), it was excluded from being used
to test the second data set. Table 4 summarizes
results obtained when the second data set was used
as input for the conjugate gradient and quasi
Newton methods.

 File 1a Input File 2a Input File 3a Input
Topology

{20,17,1}

FalsePos = N/A Topology

{24,14,1}

FalsePos = 0 Topology

{28,17,1}

FalsePos = 0

α = 0.1, µ = 0.75 False Neg =N/A α = 0.05, µ = 0.75 FalseNeg = 0 α = 0.05, µ = 0.70 FalseNeg = 75%

GDM

MSE = N/A 500 Epoch MSE = exp-5 140 Epoch MSE = 0.07 500 Epoch

FalsePos = 0 FalsePos = 0 FalsePos = 0 Topology

{20,13,1} FalseNeg = 0

Topology

{24,10,1} FalseNeg = 0

Topology

{28,13,1} FalseNeg = 0

CGP

MSE = exp-5 90 Epoch MSE = exp-5 50 Epoch MSE = exp-5 40 Epoch

FalsePos = 0 FalsePos = 0 FalsePos = 0 Topology

{20,13,1} FalseNeg = 0

Topology

{24,11,1} FalseNeg = 0

Topology

{28,11,1} FalseNeg = 0

BFGS

MSE = exp-5 45 Epoch MSE = exp-5 60 Epoch MSE = exp-5 40 Epoch

Table 3: Summary of Simulation Results for the First Data Set

 File 1b Input File 2b Input File 3b Input
FalsePos = .04% FalsePos = 0.01% FalsePos = 0 Topology

{20,15,1} FalseNeg = 15%

Topology

{24,14,1} FalseNeg = 17.5%

Topology

{28,16,1} FalseNeg=17.5%

CGP

MSE = 0.01 500 Epoch MSE = 0.17 500 Epoch MSE = 0.18 450 Epoch*

FalsePos=0.15% FalsePos=0.15% FalsePos= 0.05% Topology

{20,17,1} FalseNeg=12.5%

Topology

{24,15,1} FalseNeg = 5.0%

Topology

{28,16,1} FalseNeg=25.0%

BFGS

MSE = 0.01 500 Epoch MSE = 0.01 500 Epoch MSE 100 Epoch*

Table 4: Summary of Simulation Results for the Second Data Set
*NN method stops due to gradient too small

In testing the following observations were

made. First, the gradient descent with momentum
method did not perform well as the Conjugate
Gradient and quasi Newton methods. Furthermore,
it was time consuming to tune the learning rate,
α, and the momentum constant, µ, for this method
to operate properly. For instance, when the input
was File1a, the GDM method was not able to
classify the intrusion traffic from the authorized
traffic, however it was able to do the classification
correctly when the input file was File2a or File3a.
When the input file was File2a, GDM requires 140
epochs to converge compared to only 50 epochs for
CGP and 60 epochs for BFGS. When the input file
was File3a, GDM needed 500 epochs to converge
to a 75% false negative error compared to 40
epochs and no false negative for both CGP and
BFGS methods. These results indicate that both
the CGP and the BFGS methods were superior in
classifying authorized users from intruders while
maintaining good false negative values and good
convergence properties compared to the GDM
method.

Second, the conjugate gradient and the quasi

Newton methods exhibited roughly the same
performance in terms of classification. Both of
these methods required simpler NN topology (i.e.
NN topology with fewer hidden layer neurons) and
fewer epochs to converge compared to the GDM
method.

Third, the number of CUs used in each input

sample affected the performance of the
classification of the data. Of all the data sets used,
File2a and File2b tended to yield the best
performance for the three neural networks
methods. This leads one to believe that an input
sample consisting of 5 CUs (20 elements) might
not contain enough information, while 7 CUs (28

elements) input sample might contain too much
information, whereas 6 CUs (24 elements) input
samples contains the right amount of information
for classification of computer users. This issue
needs further study.

V. Summary

In this paper, the problem of intrusion detection
is posed as a classification problem. Three
different BP neural network methods were applied
to solve this problem. For training and testing
purposes, two synthetic test data sets were created.
From the first test data set, it was shown that the
three neural networks methods were capable of
classifying authorized users from intruders. The
conjugate gradient and the quasi Newton methods
yielded superior performance than the gradient
descent with momentum method. With the second
test data set, the conjugate gradient and quasi
Newton methods performed best when each input
sample size is 6 CUs, or equivalently 24 elements
long.

VI. Conclusion and Future Work

From the preliminary results shown in this
paper it appears that neural network techniques
hold some potential in intrusion detection. The
training data and test data used in this study were
synthetically generated. Using this generated data,
it was shown that the conjugate gradient and the
quasi Newton can successfully detect intruders
logging into a computer network. These two
methods only required an input sample of 6

consecutive CUs from the intruder to classify that
the current user is indeed an intruder.

Several issues remain to be investigated. First,

it is necessary to evaluate the performance of
neural networks with data sets captured by
monitoring real traffic. Second, it is also necessary
to establish the feature set that best describes users
and intruders. The three used in this paper, namely
command set, login time, and CPU usage, were
selected because they appeared to be reasonable
choices after a cursory examination of a data set
available at the Security Laboratory of the
University of California at Davis. Third, it is
necessary to characterize the drifting patterns
among authorized users and develop an
incremental training procedure. Finally, besides
the BP methods, there are other neural networks
methods like the radial basis function (RBF) that
could be implemented. These issues are being
addressed at this time.

VII. Acknowledgement

This work was performed under the auspices of
the U.S. Department of Energy by the University
of California, Lawrence Livermore National
Laboratory under Contract No. W-7405-Eng-48.

VIII. References

[1] R. Bace, Intrusion Detection, Macmillan

Technical Publishing, 2000.
[2] V. Dao, R. Vemuri, S. Templeton, “Profiling

Users in the UNIX OS Environment”,
International Computer Science Conventions
Conference, University of Wollongong,
Australia, Dec. 2000.

[3] J. Principe, N. Euliano, W. Lefebvre, Neural
and Adaptive System – Fundamentals Through
Simulations, Wiley, 2000.

[4] S. Haykin, Neural Networks – A
Comprehensive Foundation, 2nd Edition,
Prentice Hall, 2000.

[5] MATLAB, Neural Network Toolbox, Version
3, The Math Works Inc., 1998.

[6] E. Dennis, R. Schnabel, Numerical Methods
for Unconstrained Optimization and Nonlinear
Equations, Englewood Cliffs, NJ: Prentice-
Hall, 1983.

[7] M. Hagen, H. Demuth, and M. Beale, Neural
Network Design, Boston, MA., PWS
Publishing, 1996.

[8] D. Denning, “An Intrusion Detection Model”,
IEEE Transactions on Software Engineering,
1987.

[9] S. Northcutt, M. Cooper, M. Fearnow, K.
Frederick, Intrusion Signature and Analysis,
New Riders, 2001.

	Abstract
	Introduction
	Problem Formulation and The Back Propagation Methods
	Creation of Training and Test Data Sets
	Characteristics of Data Set
	Organization of Data Set

	Simulation Results and Performance Comparison
	
	File 2a Input
	GDM
	CGP
	BFGS
	File 2b Input
	CGP
	BFGS

	Summary
	Conclusion and Future Work
	Acknowledgement
	References

